SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>DUBL-CHEK GLO-NETIC Aerosol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Proper shipping name</td>
<td>AEROSOLS</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
<tr>
<td>CAS number</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Application is by spray atomisation from a hand held aerosol pack Use according to manufacturer's directions. |

Details of the manufacturer/importer

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Callington Haven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>30 South Street Rydalmere 2116 NSW Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 2 9898 2788</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 2 9684 4215</td>
</tr>
<tr>
<td>Website</td>
<td>www.callingtonhaven.com</td>
</tr>
<tr>
<td>Email</td>
<td>sales@calhaven.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1800 039 008 (24 hours), +61 3 9573 3112</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>1800 039 008 (24 hours), +61 3 9573 3112</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

| DANGEROUS GOODS. NON-HAZARDOUS SUBSTANCE. According to NOHSC Criteria, and ADG Code. |

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th>Flammability</th>
<th>4</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Label elements

Relevant risk statements are found in section 2

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>Not Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Phrases [1]</td>
<td></td>
</tr>
<tr>
<td>R44</td>
<td>Risk of explosion if heated under confinement.</td>
</tr>
<tr>
<td>R12</td>
<td>Extremely flammable.</td>
</tr>
</tbody>
</table>

Continued...
Indication(s) of danger F+

SAFETY ADVICE

S09 Keep container in a well ventilated place.
S15 Keep away from heat.
S16 Keep away from sources of ignition. No smoking.
S23 Do not breathe gas/fumes/vapour/spray.
S29 Do not empty into drains.
S33 Take precautionary measures against static discharges.
S38 In case of insufficient ventilation, wear suitable respiratory equipment.
S41 In case of fire and/or explosion, DO NOT BREATHE FUMES.
S43 In case of fire use...
S51 Use only in well ventilated areas.
S56 Dispose of this material and its container at hazardous or special waste collection point.

Other hazards

- May produce discomfort of the eyes and skin*.
- Vapours potentially cause drowsiness and dizziness*.
- Repeated exposure potentially causes skin dryness and cracking*.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% (weight)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8042-47-5</td>
<td>NotSpec.</td>
<td>white mineral oil (petroleum)</td>
</tr>
<tr>
<td>68476-85-7</td>
<td>NotSpec.</td>
<td>hydrocarbon propellant</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If aerosols come in contact with the eyes:
- Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
- Ensure complete irrigation of the eye by keeping the eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
If aerosols, fumes or combustion products are inhaled:
- Remove to fresh air.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

SMALL FIRE:
- Water spray, dry chemical or CO2

LARGE FIRE:

Continued...
Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- If safe, switch off electrical equipment until vapour fire hazard removed.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- **DO NOT** approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Liquid and vapour are highly flammable.
- Severe fire hazard when exposed to heat or flame.
- Vapour forms an explosive mixture with air.
- Severe explosion hazard, in the form of vapour, when exposed to flame or spark.
- Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition with violent container rupture.
- Aerosol cans may explode on exposure to naked flames.
- Rupturing containers may rocket and scatter burning materials.
- Hazards may not be restricted to pressure effects.
- May emit acrid, poisonous or corrosive fumes.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- Combustion products include: carbon dioxide (CO₂), other pyrolysis products typical of burning organic material.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Wear protective clothing, impervious gloves and safety glasses.
- Shut off all possible sources of ignition and increase ventilation.
- Wipe up.
- If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.

Major Spills
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse/absorb vapour.
- Absorb or cover spill with sand, earth, inert materials or vermiculite.
- If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated.
- Undamaged cans should be gathered and stowed safely.
- Collect residues and seal in labelled drums for disposal.

Section 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces unless atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- **DO NOT** contact with incompatible materials.
- **When handling**, **DO NOT** eat, drink or smoke.
- **DO NOT** incinerate or puncture aerosol cans.
- **DO NOT** spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this MSDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
OTHER INFORMATION

- Store below 38 deg. C.
- Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can.
- DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- No smoking, naked lights, heat or ignition sources.
- Keep containers securely sealed. Contents under pressure.
- Store away from incompatible materials.
- Store in a cool, dry, well ventilated area.
- Avoid storage at temperatures higher than 40 deg C.
- Store in an upright position.
- Protect containers against physical damage.
- Check regularly for spills and leaks.
- Observe manufacturer’s storage and handling recommendations contained within this MSDS.

CONDITIONS FOR SAFE STORAGE, INCLUDING ANY INCOMPATIBILITIES

- Suitable container
 - Aerosol dispenser.
 - Check that containers are clearly labelled.
- Storage incompatibility
 - Avoid storage with oxidisers.

PACKAGE MATERIAL INCOMPATIBILITIES

Not Available

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>white mineral oil (petroleum)</td>
<td>Oil mist, refined mineral</td>
<td>5 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>hydrocarbon propellant</td>
<td>LPG (liquefied petroleum gas)</td>
<td>1800 mg/m³ / 1000 ppm</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

| EMERGENCY LIMITS |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Ingredient | TEEL-0 | TEEL-1 | TEEL-2 | TEEL-3 |
| white mineral oil (petroleum) | 0.2 ppm | 0.6 ppm | 500 ppm | 500 ppm |
| hydrocarbon propellant | 1000 ppm | 2000 ppm | 2000 ppm | 2000 ppm |

Ingredient	Original IDLH	Revised IDLH	
white mineral oil (petroleum)	Not Available	Not Available	
hydrocarbon propellant	19,000 [LEL] ppm	2,000 [LEL] ppm	

Exposure controls

- Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.
- The basic types of engineering controls are:
 - Process controls which involve changing the way a job activity or process is done to reduce the risk.
 - Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
 - Employers may need to use multiple types of controls to prevent employee overexposure.

- General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.
- Provide adequate ventilation in warehouse or closed storage areas.
- Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Speed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>aerosols, (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 ft/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>
SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>22aer Green liquid with petroleum odour; does not mix with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Melting point / freezing point</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Personal protection

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 ft/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Eye and face protection

No special equipment for minor exposure i.e. when handling small quantities.

OTHERWISE: For potentially moderate or heavy exposures:
- Safety glasses with side shields:
- NOTE: Contact lenses pose a special hazard; soft lenses may absorb irritants and ALL lenses concentrate them.

Skin protection

See Hand protection below

Hands/feet protection

- No special equipment needed when handling small quantities.
- OTHERWISE:
 - For potentially moderate exposures:
 - Wear general protective gloves, eg. light weight rubber gloves.
 - For potentially heavy exposures:
 - Wear chemical protective gloves, eg. PVC. and safety footwear.

Body protection

See Other protection below

Other protection

No special equipment needed when handling small quantities.

OTHERWISE:
- Overalls.
- Skin cleansing cream.
- Eyewash unit.
- Do not spray on hot surfaces.
- The clothing worn by process operators insulated from earth may develop static charges far higher (up to 100 times) than the minimum ignition energies for various flammable gas-air mixtures. This holds true for a wide range of clothing materials including cotton.
- Avoid dangerous levels of charge by ensuring a low resistivity of the surface material worn outermost.

Respiratory protection

Type AX-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

DUBL-CHEK GLO-NETIC Aerosol Not Available

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>* CPI - Chemwatch Performance Index</td>
<td></td>
</tr>
<tr>
<td>A: Best Selection</td>
<td></td>
</tr>
<tr>
<td>B: Satisfactory; may degrade after 4 hours continuous immersion</td>
<td></td>
</tr>
<tr>
<td>C: Poor to Dangerous Choice for other than short term immersion</td>
<td></td>
</tr>
<tr>
<td>NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation, -</td>
<td></td>
</tr>
<tr>
<td>* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Required minimum protection factor</th>
<th>Maximum gas/vapour concentration present in air (p.p.m. by volume)</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10</td>
<td>1000</td>
<td>AX-AUS / Class 1 P2</td>
<td>-</td>
</tr>
<tr>
<td>up to 50</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>up to 50</td>
<td>5000</td>
<td>Airline</td>
<td>-</td>
</tr>
<tr>
<td>up to 100</td>
<td>5000</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100+</td>
<td>1000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand
A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)
Information on toxicological effects

Inhaled
Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

WARNING: Intentional misuse by concentrating/inhaling contents may be lethal.

Ingestion
Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to physical form of product.

Ingestion may result in nausea, abdominal irritation, pain and vomiting

Skin Contact
Limited evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongious layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Eye
Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and/or is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Chronic
Principal route of exposure is by skin contact; lesser exposures include inhalation of fumes from hot oils, oil mists or droplets. Prolonged contact with mineral oils carries with it the risk of skin conditions such as oil folliculitis, eczematous dermatitis, pigmentation of the face (melanosis) and warts on the sole of the foot (plantar warts). With highly refined mineral oils no appreciable systemic effects appear to result from skin absorption.

Exposure to oil mists frequently elicits respiratory conditions, such as asthma; the provoking agent is probably an additive. High oil mist concentrations may produce lipid pneumonia although clinical evidence is equivocal. In animals exposed to concentrations of 100 mg/m3 oil mist, for periods of 12 to 26 months, the activity of lung and serum alkaline phosphatase enzyme was raised; 5 mg/m3 oil mist did not produce this response. These enzyme changes are sensitive early indicators of lung damage. Workers exposed to vapours of mineral oil and kerosene for 5 to 35 years showed an increased prevalence of slight basal lung fibrosis.

SECTION 10 STABILITY AND REACTIVITY

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>9.5</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>1.8</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>345@21°C</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH as a solution(1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Hazardous decomposition products</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 11 TOXICOLOGICAL INFORMATION

DUBL-CHEK GLO-NETIC Aerosol

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>Not Available</td>
</tr>
<tr>
<td>IRRITATION</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

white mineral oil (petroleum)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>Not Available</td>
</tr>
<tr>
<td>IRRITATION</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

hydrocarbon propellant

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
<td>Not Available</td>
</tr>
<tr>
<td>IRRITATION</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Not available. Refer to individual constituents.

The materials included in the Lubricating Base Oils category are related from both process and physical-chemical perspectives; the potential toxicity of a specific distillate base oil is inversely related to the severity or extent of processing the oil has undergone, since:
HYDROCARBON PROPELLANT

The adverse effects of these materials are associated with undesirable components, and
the levels of the undesirable components are inversely related to the degree of processing:
Distillate base oils receiving the same degree or extent of processing will have similar toxicities:
The potential toxicity of residual base oils is independent of the degree of processing the oil receives.

The reproductive and developmental toxicity of the distillate base oils is inversely related to the degree of processing.
Unrefined & mildly refined distillate base oils contain the highest levels of undesirable components, have the largest variation of hydrocarbon molecules and have shown the highest potential carcinogenic and mutagenic activities. Highly and severely refined distillate base oils are produced from unrefined and mildly refined oils by removing or transforming undesirable components. In comparison to unrefined and mildly refined base oils, the highly and severely refined distillate base oils have a smaller range of hydrocarbon molecules and have demonstrated very low mammalian toxicity testing of residues: Mutagenicity and carcinogenicity testing of residues have been negative, supporting the belief that these materials lack biologically active components or the components are largely non-bioavailable due to their molecular size.

Toxicity testing has consistently shown that lubricating base oils have low acute toxicities. Numerous tests have shown that a lubricating base oil’s mutagenic and carcinogenic potential correlates with its 3-7 ring polycyclic aromatic compound (PAC) content, and the level of DMSO extractables(e.g. IP346 assays), both characteristics that are directly related to the degree/conditions of processing

Highly and Severely Refined Distillate Base Oils

Acute toxicity: Multiple studies of the acute toxicity of highly & severely refined base oils have been reported. Irrespective of the crude source or the method or extent of processing, the oral LD50s have been observed to be >50g/kg (bw) and the dermal LD50s have ranged from >2 to >50g/kg (bw). The LC50 for inhalation toxicity ranged from 2.18 mg/l to 4 mg/l.

When tested for skin and eye irritation, the materials have been reported as “non-irritating” to “moderately irritating” Testing in guinea pigs for sensitization has been negative

Repeat dose toxicity: Several studies have been conducted with these oils. The weight of evidence from all available data on highly & severely refined base oils support the presumption that a distillate base oil’s toxicity is inversely related to the degree of processing it receives.

Adverse effects have been reported with even the most severely refined white oils - these appear to depend on animal species and/or the peculiarities of the study.

The granulomatous lesions induced by the oral administration of white oils are essentially foreign body responses. The lesions occur only in rats, of which the Fischer 344 strain is particularly sensitive.

The testicular effects seen in rabbits after dermal administration of a highly to severely refined base oil were unique to a single study and may have been related to stress induced by skin irritation, and the accumulation of foamy macrophages in the alveolar spaces of rats exposed repeatedly via inhalation to high levels of highly to severely refined base oils is not unique to these oils, but would be seen after exposure to many water insoluble materials.

Reproductive and developmental toxicity: A highly refined base oil was used as the vehicle control in a one-generation reproduction study. The study was conducted according to the OECD Test Guideline 421. There was no effect on fertility and mating indices in either males or females. At necropsy, there were no consistent findings and organ weights and histopathology were considered normal by the study’s authors.

A single generation study in which a white mineral oil (a food/ drug grade severely refined base oil) was used as a vehicle control is reported. Two separate groups of pregnant rats were administered 5 ml/kg (bw)/day of the base oil via gavage, on days 6 through 19 of gestation. In one of the two base oil dose groups, three malformed foetuses were found among three litters. The study authors considered these malformations to be minor and within the normal ranges for the strain of rat.

Genotoxicity:

In vitro (mutagenicity): Several studies have reported the results of testing different base oils for mutagenicity using a modified Ames assay. Base oils with no or low concentrations of 3-7 ring PACs had mutagenicity indices. In vivo (chromosomal aberrations): A total of seven base stocks were tested in male and female Sprague-Dawley rats using a bone marrow cytogenetics assay. The test materials were administered via gavage at dose levels ranging from 500 to 5000 mg/kg (bw). Dosing occurred for either 10 days or for five consecutive days. None of the base oils produced a significant increase in aberrant cells.

Carcinogenicity: Highly & severely refined base oils are not carcinogens, when given either orally or dermally.

The substance is classifiable as IARC Group 3: NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

Oral (rat) TDL0: 92000 mg/kg/90D-Cont. Generally the toxicity and irritation is of low order. White oils and highly/soy based refined oils have not shown the long term risk of skin cancer that follows persistent skin contamination with some other mineral oils, due in all probability to refining that produces low content of both polyaromatics (PAH) and benz-alpha-pyrenes (BaP)

No significant acute toxicological data identified in literature search.

for Petroleum Hydrocarbon Gases:

In many cases, there is more than one potentially toxic constituent in a refinery gas. In those cases, the constituent that is most toxic for a particular endpoint in an individual refinery stream is used to characterize the endpoint hazard for that stream. The hazard potential for each mammalian endpoint for each of the petroleum hydrocarbon gases is dependent upon each petroleum hydrocarbon gas constituent endpoint toxicity values (LC50, LOAEL, etc.) and the relative concentration of the constituent present in that gas. It should also be noted that for an individual petroleum hydrocarbon gas, the constituent characterizing toxicity may be different for different mammalian endpoints, again, being dependent upon the concentration of the different constituents in each, distinct petroleum hydrocarbon gas.

All Hydrocarbon Gases Category members contain primarily hydrocarbons (i.e., alkanes and alkenes) and occasionally asphyxiant gases like hydrogen. The inorganic components of the petroleum hydrocarbon gases are less toxic than the C1 - C4 and C5 - C6 hydrocarbon components to both mammalian and aquatic organisms. Unlike other petroleum product categories (e.g. gasoline, diesel fuel, lubricating oils, etc.), the inorganic and hydrocarbon constituents of hydrocarbon gases can be evaluated for hazard individually to then predict the screening level hazard of the Category members

Acute toxicity: No acute toxicity LC50 values have been derived for the C1 -C4 and C5- C6 hydrocarbon (HC) fractions because no mortality was observed at the highest exposure levels tested (~5 mg/l) for these petroleum hydrocarbon gas constituents. The order of acute toxicity of petroleum hydrocarbon gas constituents from most to least toxic is:

C5-C6 HC's (LC50 > 1063 ppm) > C1-C4 HC's (LC50 > 10,000 ppm) > benzene (LC50 = 13,700 ppm) > butadiene (LC50 = 129,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Repeat dose toxicity: With the exception of the asphyxiant gases, repeated dose toxicity has been observed in individual selected petroleum hydrocarbon gas constituents. Based upon LOAEL values, the order of order of repeated-dose toxicity of these constituents from most toxic to the least toxic gas is:

Benzene (LOAEL >10 ppm) >C1-C4 HC's (LOAEL = 5,000 ppm; assumed to be 100% 2-butene) > C5-C6 HC's (LOAEL = 6,625 ppm) > butadiene (LOAEL = 8,000 ppm) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen).

Genotoxicity:

In vitro: The majority of the Petroleum Hydrocarbon Gases Category components are negative for in vitro genotoxicity. The exceptions are: benzene and 1,3-butadiene, which are genotoxic in bacterial and mammalian in vitro test systems.

In vivo: The majority of the Petroleum Hydrocarbon Gases Category components are negative for in vivo genotoxicity. The exceptions are benzene and 1,3-butadiene, which are genotoxic in vivo test systems.

Developmental toxicity: Developmental effects were induced by two of the petroleum hydrocarbon gas constituents, benzene and the C5-C6 hydrocarbon fraction. No developmental toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiant gases have not been tested for developmental toxicity. Based on LOAEL and NOAEL values,
the order of acute toxicity of these constituents from most to least toxic is:
Benzene (LOAEL = 20 ppm) > butadiene (NOAEL >=1,000 ppm) > C5-C6 HCs (LOAEL = 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; assumed to be 100% 2-butene) > asphyxiating gases (hydrogen, carbon dioxide, nitrogen).

Reproductive toxicity: Reproductive effects were induced by only two petroleum hydrocarbon gas constituents, benzene and isobutane (a constituent of the C1-C4 hydrocarbon fraction). No reproductive toxicity was observed at the highest exposure levels tested for the other petroleum hydrocarbon gas constituents tested for this effect. The asphyxiating gases have not been tested for reproductive toxicity. Based on LOAEL and NOAEL values, the order of reproductive toxicity of these constituents from most to least toxic is:
Benzene (LOAEL = 300 ppm) > butadiene (NOAEL >=6,000 ppm) > C5-C6 HCs (NOAEL >=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm; assumed to be 100% isobutane) > asphyxiating gases (hydrogen, carbon dioxide, nitrogen).

CMR STATUS

CARCINOGEN hydrocarbon propellant Australia Exposure Standards - Carcinogens Carc. 1B

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Consult State Land Waste Management Authority for disposal.
Discharge contents of damaged aerosol cans at an approved site.
Allow small quantities to evaporate.
DO NOT incinerate or puncture aerosol cans.
Bury residues and emptied aerosol cans at an approved site.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant NO
HAZCHEM 2YE

Land transport (ADG)

<table>
<thead>
<tr>
<th>UN number</th>
<th>Packing group</th>
<th>UN proper shipping name</th>
<th>Environmental hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>Not Applicable</td>
<td>AEROSOLS</td>
<td>No relevant data</td>
</tr>
</tbody>
</table>
Transport hazard class(es)

<table>
<thead>
<tr>
<th>Class</th>
<th>2.1</th>
</tr>
</thead>
</table>

Subrisk

Not Applicable

Special precautions for user

Special provisions: 63 190 277 327

Limited quantity: See SP 277

Air transport (ICAO-IATA / DGR)

UN number

1950

Packing group

Not Applicable

UN proper shipping name

Aerosols, flammable

Environmental hazard

No relevant data

Transport hazard class(es)

ICAO/IATA Class: 2.1

ICAO / IATA Subrisk: Not Applicable

ERG Code: 10L

Special precautions for user

Special provisions: A145A167A802

Cargo Only Packing Instructions: 203

Cargo Only Maximum Qty / Pack: 150 kg

Passenger and Cargo Packing Instructions: 203

Passenger and Cargo Maximum Qty / Pack: 75 kg

Passenger and Cargo Limited Quantity Packing Instructions: Y203

Passenger and Cargo Limited Maximum Qty / Pack: 30 kg G

Sea transport (IMDG-Code / GGVSee)

UN number

1950

Packing group

Not Applicable

UN proper shipping name

AEROSOLS

Environmental hazard

No relevant data

Transport hazard class(es)

IMDG Class: 2.1

IMDG Subrisk: See SP63

Special precautions for user

EMS Number: F-D , S-U

Special provisions: 63 190 277 344 959

Limited Quantities: See SP277

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

white mineral oil (petroleum)(8042-47-5) is found on the following regulatory lists

hydrocarbon propellant(68476-85-7) is found on the following regulatory lists

Continued...
SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at www.chemwatch.net/references

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.